| .mvn/wrapper | ||
| frontend | ||
| src | ||
| .gitignore | ||
| diagram.jpg | ||
| docker-compose.yaml | ||
| mvnw | ||
| mvnw.cmd | ||
| package-lock.json | ||
| package.json | ||
| pom.xml | ||
| README.md | ||
| tsconfig.json | ||
| types.d.ts | ||
| vite.config.ts | ||
AI powered expert system demo
Spring AI re-implementation of https://github.com/marcushellberg/java-ai-playground
This app shows how you can use Spring AI to build an AI-powered system that:
- Has access to terms and conditions (retrieval augmented generation, RAG)
- Can access tools (Java methods) to perform actions (Function Calling)
- Uses an LLM to interact with the user
Requirements
- Java 17+
- OpenAI API key in
OPENAI_API_KEYenvironment variable
Running
Run the app by running Application.java in your IDE or mvn in the command line.
With OpenAI Chat
Add to the POM the Spring AI Open AI boot starter:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
Add the OpenAI configuraiton to the applicaiton.properties:
spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.chat.options.model=gpt-4o
WIth VertexAI Geminie Chat
Add to the POM the Spring AI VertexAI Gemeni and Onnx Transfomer Embedding boot starters:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-vertex-ai-gemini-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
</dependency>
Add the VertexAI Gemini configuraiton to the applicaiton.properties:
spring.ai.vertex.ai.gemini.project-id=${VERTEX_AI_GEMINI_PROJECT_ID}
spring.ai.vertex.ai.gemini.location=${VERTEX_AI_GEMINI_LOCATION}
spring.ai.vertex.ai.gemini.chat.options.model=gemini-1.5-pro-001
# spring.ai.vertex.ai.gemini.chat.options.model=gemini-1.5-flash-001
With Azure OpenAI Chat
Add to the POM the Spring AI Azure OpenAI boot starter:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai-spring-boot-starter</artifactId>
</dependency>
Add the Azure OpenAI configuraiton to the applicaiton.properties:
spring.ai.azure.openai.api-key=${AZURE_OPENAI_API_KEY}
spring.ai.azure.openai.endpoint=${AZURE_OPENAI_ENDPOINT}
spring.ai.azure.openai.chat.options.deployment-name=gpt-4o
With Groq Chat
It reuses the OpenAI Chat client but ponted to the Groq endpont
Add to the POM the Spring AI Open AI boot starter:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
</dependency>
Add the Groq configuraiton to the applicaiton.properties:
spring.ai.openai.api-key=${GROQ_API_KEY}
spring.ai.openai.base-url=https://api.groq.com/openai
spring.ai.openai.chat.options.model=llama3-70b-8192
With Anthropic Claude 3 Chat
Add to the POM the Spring AI Anthropic Claude and Onnx Transfomer Embedding boot starters:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-anthropic-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
</dependency>
Add the Anthropic configuration to the application.properties:
spring.ai.anthropic.api-key=${ANTHROPIC_API_KEY}
spring.ai.openai.chat.options.model=llama3-70b-8192
spring.ai.anthropic.chat.options.model=claude-3-5-sonnet-20240620
Build Jar
./mvnw clean install -Pproduction
java -jar ./target/playground-flight-booking-0.0.1-SNAPSHOT.jar
docker run -it --rm --name postgres -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres ankane/pgvector
